锂氧电池具有极高的理论能量密度(~3500 Wh/kg),因此备受电池行业研究者的广泛关注。然而,许多因素影响其实际能量密度,特别是放电产物过氧化锂(Li2O2)表面沉积方式和正极材料中多孔导电集流体的使用。针对该问题,近期,新加坡国立大学王家功(John Wang)教授、丁军(Jun Ding)教授和陈伟教授(共同通讯作者)通过挤出式3D打印技术构筑了一种新型的、金属有机框架(MOF)衍生的、分级多孔自支撑的碳电极,用于提高锂氧电池实际能量密度。相关研究结果发表在Advanced Functional Materials上,第一作者为吕之阳博士和Gwendolyn J. H. Lim。 图1. 3D打印电极制备及应用的示意图。 如图1所示,该3D打印自支撑碳电极无需使用集流体,其框架中大孔结构易于Li2O2孔内沉积和减缓表面钝化,而且其Co-MOF衍生的纳米钴基催化剂有利于Li2O2的产生和分解,从而极大地提高锂氧电池的实际能量密度。 图2. 3D打印碳电极的具体制备流程及表征。 图2详细地展示了3D打印电极的简单制备流程,前躯体Co-MOF浆料的流变学参数,以及电极形貌与结构。该碳电极集合了分级多孔结构、高比表面、自支撑框架以及纳米催化剂等结构优势。其独特巧妙的技术路线,也为制备其它能源器件电极提供了新思路。 |