CLIP本质上是SLA(或DLP)的改进,其原理并不复杂,底部的紫外光投影让光敏树脂固化,而氧抑制固化,水槽底部的液态树脂由于接触氧气而 保持稳定的液态区域,这样就保证了固化的连续性。 CLIP工艺主要依赖于一种特殊的既透明又透气的窗口,该窗口同时允许光线和氧气通过。该机器能够控制氧的确切量和氧气被允许进入树脂池 的时间。氧气因此起到了抑制某些区域树脂固化的作用,而与此同时光线会固化那些没有暴露在氧气里的区域。也就是说,氧气能够在树脂内营造一个光固化的“盲 区”,这种“盲区”最小可达几十微米厚(约为2-3个红细胞的直径)。在这些区域里的树脂根本不能可能发生光聚合反应。然后该设备会使用UV光像放电影那 样把3D模型的一系列横截面投射到里面。 这项技术最重要的两个优势,一个是打印速度快到了颠覆性程度,比传统的3D打印机要快25 – 100倍,理论上有提高到1000倍的潜力。另外一个是分层理论上可以无限细腻:传统3D打印需要把3D模型切成很多层,类似于叠加幻灯片,这个原理就决 定了粗糙无法消除,而连续液面生产模式在底部投影的光图像可以做到连续变化,相当于从叠加幻灯片进化成了叠加视频,虽然毫无疑问这个视频帧数也不是无限 大,但是对比幻灯片的进步是巨大的。 使用连续生长的加工方式大大改善了产品的力学性能。传统的3D打印零件因为层状结构,其力学特性在各个方向上不同,特别是在堆叠的方向上,抗剪切性能很差。而连续液面生产的零部件的力学特性在各个方向保持一致,在实际应用中少了很多顾虑。 |