开发具有高强度和高韧性的先进轻量化结构仍然具有挑战性。来自哈尔滨工业大学特种陶瓷研究所与先进结构功能一体化材料与绿色制造技术工信部重点实验室等科研机构的研究人员,通过墨水直写3D打印技术开展了一项研究,提供了一种结合实验和模拟的方法,首次制造出具有轻质、高强度和优异韧性的3D打印地质聚合物复合结构。 这项研究采用了墨水直写3D打印技术打印短碳纤维增强地质聚合物(CsfGP)复合材料,系统研究了CsfGP油墨的流变性能和硬化地质聚合物复合结构的力学性能。CsfGP油墨表现出明显的剪切稀化行为,这有助于从微喷嘴中挤出油墨,保持丝状形状并支持后续打印层。在CsfGP复合材料中,短碳纤维的一致取向分布主要增强了它们的机械性能。当纤维含量为3 wt%时,CsfGP复合材料的弯曲强度和压缩强度分别比非增强地质聚合物高309.2%和375.8%。随后,对布林根结构(Bouligand structures)的CsfGP复合材料被成功地进行了 3D 打印。由于其分层有序的结构和复杂的接口,它们显示出卓越的承载能力和非脆性破坏模式。 3D打印与布林根结构设计为轻量化、高强度和优异韧性的CsfGP复合材料提供了一种新方法。该方法将为人们进行新的轻质结构设计和制造策略提供新的可能性。
相关研究论文 doi.org/10.1016/j.compositesb.2021.109348 为设计更多实用先进纤维增强材料开辟道路 3D打印复合材料的力学性能和断裂力学分析表明,改进的布林根结构中复杂的层间结构和力学各向异性导致显着增强的断裂阻力和裂纹取向不敏感性。从这项初步研究中,可以得出以下结论: 1. 短碳纤维作为一种有效的添加剂和增强剂,可以显著优化地质聚合物油墨的流变性能。随着短碳纤维含量(0-6 wt%)的增加,CsfGP油墨的屈服应力分别增加了63.0%、73.2%、99.8%、141.7、146.8%和601.8%(与纯地质聚合物油墨相比),允许以高空间精度打印CsfGP复合材料。
所得CsfGP复合材料的直接墨水书写示意图。
专为 C sf GP直接墨水书写而设计的打印机。(a)在复合油墨沉积过程中喷嘴内高纵横比纤维的渐进排列示意图,(b)原始短碳纤维的典型微观结构,(c-d)纵向打印样品在低和高放大倍数下的拉伸断裂表面, (e-h) 布林根结构(结构I),俯仰角 γ = 15°、45°、60° 和 90°,(i)用于弯曲强度测试的打印样本,(j)用于抗压强度测试的打印样本,(k)用于成形性测试的印刷V形模型。
模型示意图和有限元边界条件。(a)结构I和结构II的空间模型示意图,(b,c)分别为3D打印的 45°/90°-结构I图案的显微图像,(d-g)45°-剖面图结构I/II和(d)有限元模型和边界条件。 2. 短切碳纤维的存在提高了CsfGP复合物的抗弯强度和抗压强度,当纤维含量为3wt.%,达到了峰值。复合材料机械强度的提高主要是由于纤维与地质聚合物基体之间良好的界面结合。当其含量进一步增加到4 wt%以上时,纤维会发生团聚,这降低了CsfGP复合材料的机械性能。
含有不同浓度短碳纤维的改性和未改性地质聚合物油墨的流变性能。(a)作为剪切速率函数的CsfGP油墨表观粘度的重对数坐标图,(b) 该图通过3IT测试说明了改性油墨的触变行为,(c)剪切模量的重对数坐标图CsfGP油墨与振荡应力的关系,(d)具有不同短碳纤维浓度的油墨的初始屈服应力。
不同短碳纤维含量的CsfGP复合材料的力学性能。(a)地聚合物基体和CsfGP复合材料在弯曲强度试验期间的典型载荷-位移曲线,(b) CsfGP复合材料的弯曲强度,(c)地质聚合物基体和CsfGP复合材料在压缩过程中的典型载荷-位移曲线强度测试,(d)CsfGP复合材料的抗压强度。
具有不同短碳纤维含量的复合材料的典型断口。(a) 0Csf, (b) 1Csf, (c) 2Csf , (d) 3Csf, (e) 4Csf,(f) 5Csf, (g) 6Csf。
(a)MD模拟CsfGP复合材料的晶胞,(b)CsfGP的拉出力-位移曲线,(C)纤维拔出过程的不同阶段:高,中和低界面电阻级。
|