面向增材制造的设计(DfAM)是指结构设计工程师利用增材独特的工艺优势去构建产品的设计过程。这就要求设计工程师在整个设计过程中都必须时刻考虑增材制造的工艺约束对设计的影响。 随着增材制造的应用的普及,增材制造给产品设计带来的优势已经愈发明显,比如将零件进行轻量化以及将多个零件合并到一起成为一个零件,并且提高力学性能。在每次对增材产品进行设计的时候都是一个思考过程,在这个过程中需要做出慎重方案决策,不光要针对设计准则的设计,还有诸多轻量化与力学性能的条件考虑。 在全球各地的制造公司对增材制造的关注越来越多,在条件允许的情况下对产品零件进行专门面向增材制造变得越来越重要。但是在很多常规零件中对增材制造来说意义并不大,对于许多很多需要开模的常规零件,在试验阶段如果采用增材制造会节省很多成本,例如在汽车行业中增材制造就在前期设计阶段对成本节约有着显著的表现。 在增材制造领域中,有着不同的设计层次,分别是直接替换零件的制造工艺、改变零件微小细节以适应增材制造工艺、专门面向增材制造的设计,这三种设计方式所带来的结果是不同的,当然最后一种面向AM的设计是三种中最优的选择,它不仅能够实现轻量化而且还可以改善零件的力学性能以及装配难易度与所占空间的大小。 增材制造为产品增值 对于SLM金属打印而言,增材制造工艺的成本非常高昂,并且其制造方式只能采用“串行”的生产方式,相对于传统常规的制造技术增材制造的速度是非常慢的,所以我们应该在增材制造能够为其带来产品增值的情况下去使用。 在产品的概念设计阶段,工程师们应该根据整个产品的结构以及零件配置的影响做出分析后,确认零部件产品的制造工艺,如选择增材制造可以使产品的利益最大化,再对零件进行专门的增材制造工艺设计。 增材制造工艺在DfAM设计中应用 1)成型方向 在我们进行增材制造的零件设计时要针对零件不同材料的工艺局限,对零件外形也要根据工艺限制去进行更改,同时也要考虑到材料的成型方向问题对零件的影响。例如三周期极小曲面的Gyroid晶胞,如下图1-Gyroid晶胞所示。
|