3D打印技术又称增材制造(AM)是一种基于计算机辅助设计3D模型,将模型加工处理,自下而上逐层堆积形成个性化的加工方法。 3D打印主要流程为: (1)数字化软件获得数据并建立三维模型; (2)将模型文件转化格式后导入打印设备中,利用3D打印的方法打印成个性化的修复体。 相较于传统切削减材方式,3D打印具有可以制备多层次复杂精细结构的样品、避免浪费原材料、减少生产成本以及提高工作效率的特点。 由于PEEK存在生物活性较低和自主抑菌性能不足的问题,严重影响其与骨结合效率,研究发现通过FDM方法打印的PEEK复合材料加入纳米活性粒子或者纤维增强材料后可有效改善PEEK生物活性,提高与骨组织的结合效率。 目前,上述复合材料主要包括优化成骨活性的3D打印羟基磷灰石-PEEK复合材料、优化力学性能的3D打印碳纤维增强-PEEK复合材料。 1.优化成骨活性的3D打印羟基磷灰石-PEEK复合材料 羟基磷灰石(HA)是由无机成分(如骨骼、牙齿)和有机成分(如胶原纤维)等构成,具有良好的生物安全性及成骨活性,其与人类骨组织的成分相似,因此在临床上常被用作骨替代材料。然而,单纯的HA脆性较大,不适合单独用于修复缺损较大的骨组织,因此对其研究主要着重于作为改善其他生物材料特性等方面。 Rodzen等将HA和PEEK粉末混合制成细丝,用改造后的3D打印机打印出不同质量分数(0%~30%)的PEEK-HA样品。扫描电子显微镜下发现HA颗粒均匀分布在样品表面。 Oladapo使用FDM制备出了不同质量分数的羟基磷灰石(0%~20%)的PEEK/CHAP复合材料,结果显示15%的PEEK/CHAP力学性能较为理想。体外高糖培养基(DMEM)培养上清液的检测结果也表明了PEEK/CHAP复合材料比纯PEEK具有更好的黏附性、增殖性和细胞活性。 Zheng等通过FDM打印出PEEK-HA复合支架,随后在其上进行小鼠胚胎成骨细胞前体细胞(MC3T3-E1)细胞增殖实验,发现具有微孔结构表面的PEEK-HA复合材料能显著促进MC3T3-E1细胞附着和矿化。因此,HA与PEEK结合可显著提高细胞的成骨活性,改善PEEK的生物活性。 2.优化力学性能的3D打印纤维增强-PEEK复合材料 为改善PEEK的力学性能,研究者发现加入不同含量的碳纤维(CF)或玻璃纤维(GF)可增强PEEK的机械强度。Han等将FDM的纯PEEK和碳纤维增强的PEEK复合材料(CFR-PEEK)进行力学性能测试,同时对样品表面进行了粗化和细化处理,结果表明,3D打印后的CFR-PEEK试样的机械强度明显优于纯PEEK样品。 图片来源:网络 Wang探讨了3D打印不同参数(喷嘴温度、平台温度、层厚等)对纯PEEK、CF/PEEK、GF/PEEK的力学性能的影响,实验结果显示5%CF/PEEK和5%GF/PEEK具有更高的拉伸强度和抗弯曲强度。 |