以色列研究人员使用 3D 打印技术预组装发动机的工作可以重塑能源的未来。他们的项目专注于微型燃气轮机在分布式能源发电中的应用,正在改变人们对能源效率的传统理解,并为可持续发展创造新的可能性。 Cukurel 为该技术提供了两种不同的应用: ●首先,他强调了军事用途,特别是无人机系统。在这个领域,供应链中断是一个重大问题,可能导致关键业务在六到九个月内没有轴承等重要部件。预组装发动机技术完全消除了对此类供应链的需求,从而解决了这个问题。 ●第二个应用是分布式能源发电。传统的集中式发电厂的能源效率上限约为 65%,所产生的35%的能源被浪费了。为此,Cukurel 提出了一种在各地使用分布式微型燃气轮机进行热电联产的解决方案。
△5厘米规模的超微型燃气轮机,旨在产生300瓦的功率 Cukurel解释说:“可再生能源是中断的能源。你不会想依赖今天有没有风吧?不然今天会有太阳。无论如何,你都想经营你的工厂。那么,在可再生能源具有中断性的前提下,如何拥有一个灵活、强大的电网呢?”在这种情况下,灵活是指快速适应和响应能源需求变化的能力,这些变化就是可再生能源的不可预测的输出。 尽管这项技术的变革潜力是显而易见的,但目前面对的主要障碍在于投资回报,微型燃气轮机的成本太高,无法在合理的时间内产生令人满意的投资回报率。目前,研究人员还计划将他们的工作商业化,与行业参与者和战略投资者的合作也正在筹备之中。Cukurel对工作的潜在社会影响表示兴奋,特别是在微型燃气轮机能够燃烧氨方面。
△碳化硅多孔介质燃烧器为燃料/空气比提供广泛的稳定性 使用氨发动机的可持续能源 氨可以作为一种可再生、绿色、无碳的燃料。氨以前曾被用作燃料,特别是在比利时的第二次世界大战期间,但自那时以来,燃气轮机的燃烧室设计发生了重大变化。战时氨动力发动机提出了许多挑战,主要是它们对燃料的敏感性和普遍缺乏灵活性。Cukurel 和他的团队开发了技术——多孔介质燃烧器——特别适合燃烧氨。 Cukurel 解释说:“在燃气轮机中,大多数燃烧室设计都使用完全不同的技术。他们对汽化过程进行优化,然后使用稀释管来计量燃料,并将热气体引入涡轮机。” 以色列理工学院团队的创新之处在于他们对特定技术的独特应用——多孔介质燃烧器。这是它首次应用于氨燃烧微型燃气轮机,其工作具有开创性。 让我们揭开“多孔介质燃烧器”一词的神秘面纱,它是一种特殊类型的燃烧器,燃料-空气混合物在多孔介质中燃烧,产生高效、低排放的燃烧。多孔介质燃烧器已经存在了至少 50 年,传统的制造方法是将泡沫浸入陶瓷浆料中,然后进行烧结。然而,正如Cukurel指出的那样,无法控制孔隙率及其在流动方向上的分布方式。为了解决上述问题,研究人员使用了增材制造技术制造了燃烧器,它具有类似甜甜圈的形状,内部有有机的气泡状晶格结构,该结构的孔隙率沿流动方向变化,这就是3D打印的用武之地,因为它可以控制传统制造技术无法实现的孔隙率梯度。
△使用预混合燃料/空气混合物运行的多孔介质燃烧器 |