10月14日讯,宾夕法尼亚州利哈伊大学的研究人员开发了一种基于机器学习的新型方法,可以根据结构相似性对材料组进行分类。在该团队认为是同类研究中的第一项研究中,人工神经网络被用于识别包含超过 25,000 幅材料显微图像的庞大数据库中的结构相似性和趋势。该技术可用于发现新材料开发之间的研究,甚至可以关联结构和属性等因素,从而可能为3D 打印等领域提供一种新的计算材料开发方法。 该研究的主要作者 Joshua Agar 描述了该模型检测结构对称性的能力如何成为该项目成功的基石。他说:“我们工作的一个新颖之处在于,我们构建了一个特殊的神经网络来理解对称性,并将其用作特征提取器,使其更好地理解图像。”
|